Start with 100.00 mL of 0.10 M acetic acid, CH3COOH. The solution has a pH of 2.87 at 25 oC. a) Calculate the Ka of acetic acid at 25 oC. b) Determine the percent dissociation for the solution.

Respuesta :

Answer: a) The [tex]K_a[/tex] of acetic acid at [tex]25^0C[/tex] is [tex]1.82\times 10^{-5}[/tex]

b) The percent dissociation for the solution is [tex]4.27\times 10^{-3}[/tex]

Explanation:

[tex]CH_3COOH\rightarrow CH_3COO^-H^+[/tex]

 cM              0             0

[tex]c-c\alpha[/tex]        [tex]c\alpha[/tex]          [tex]c\alpha[/tex]

So dissociation constant will be:

[tex]K_a=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]

Give c= 0.10 M and [tex]\alpha[/tex] = ?

Also [tex]pH=-log[H^+][/tex]

[tex]2.87=-log[H^+][/tex]  

[tex][H^+]=1.35\times 10^{-3}M[/tex]

[tex][CH_3COO^-]=1.35\times 10^{-3}M[/tex]

[tex][CH_3COOH]=(0.10M-1.35\times 10^{-3}=0.09806M[/tex]

Putting in the values we get:

[tex]K_a=\frac{(1.35\times 10^{-3})^2}{(0.09806)}[/tex]

[tex]K_a=1.82\times 10^{-5}[/tex]

b)  [tex]\alpha=\sqrt\frac{K_a}{c}[/tex]

[tex]\alpha=\sqrt\frac{1.82\times 10^{-5}}{0.10}[/tex]

[tex]\alpha=4.27\times 10^{-5}[/tex]

[tex]\% \alpha=4.27\times 10^{-5}\times 100=4.27\times 10^{-3}[/tex]

ACCESS MORE