Respuesta :
Answer:
In case of 5 m/s:
[tex]P_1=0.045*\frac{4}{0.01}*9800*\frac{(5)^2}{2*9.8}-9800*4\\ P_1=185800 N/m^2=1.85800*10^5 N/m^2[/tex]
[tex]P_1[/tex]>[tex]P_2[/tex] i.e [tex]P_1[/tex]>0, It means Water will leak out of hole.
In case of 0.5 m/s:
[tex]P_1=0.052*\frac{4}{0.01}*9800*\frac{(0.5)^2}{2*9.8}-9800*4\\ P_1=-36600N/m^2=-3.6600*10^4 N/m^2[/tex]
[tex]P_1[/tex]<[tex]P_2[/tex] i.e [tex]P_1[/tex]<0. It means air will enter into the pipe.
Explanation:
Note:
Values of constant v,f and [tex]\gamma[/tex] can vary according to the conditions. Value taken below are taken from water properties table.
According to Bernoulli Equation: Considering the frictional affects [tex]\frac{fL}{D}[/tex]
[tex]\frac{P_1}{\gamma}+\frac{V^2_1}{2g}+z_1= \frac{P_2}{\gamma}+\frac{V^2_2}{2g}+\frac{fL}{D}\frac{V^2_2}{2g}+z_2[/tex]
Where:
[tex]P_2[/tex] is the pressure at other end of pipe(outlet)=0
[tex]P_1[/tex] is the pressure at hole
[tex]V_1=V_2=V[/tex]
[tex]z_1=4 m\\z_2=0[/tex]
Above equation will become:[tex]\frac{P_1}{\gamma}= \frac{fL}{D}\frac{V^2_2}{2g}-z_1[/tex]
[tex]L=z_1[/tex]
[tex]{P_1} = \gamma\frac{fL}{D}\frac{V^2_2}{2g}-{\gamma}z_1[/tex]
Calculating Re number:
[tex]Re=\frac{VD}{v}[/tex]
Where:
V is the velocity
D is the diameter
v is the kinematic viscosity of water. Lets consider it [tex]1.12*10^{-6}m^2/s[/tex]. However kinematic viscosity can be taken according to temperature.
In case of 5 m/s:
Re=[tex]\frac{5*0.01}{1.12*10^{-6}}=44642.85[/tex]
For galvanized iron pipe , Roughness coefficient ε is 0.15 mm
[tex]\frac{\epsilon}{D}=\frac{0.15}{10}=0.015[/tex]
From Moody Charts, At above Re and [tex]\frac{\epsilon}{D}[/tex], Value of friction coefficient f is≈0.045.
[tex]\gamma[/tex]≈9800 N/m^2
[tex]P_1=0.045*\frac{4}{0.01}*9800*\frac{(5)^2}{2*9.8}-9800*4\\ P_1=185800 N/m^2=1.85800*10^5 N/m^2[/tex]
[tex]P_1[/tex]>[tex]P_2[/tex] i.e [tex]P_1[/tex]>0, It means Water will leak out of hole.
In case of 0.5 m/s:
Same above Procedure:
Calculating Re:
Re=[tex]\frac{0.5*0.01}{1.12*10^{-6}}=4464.285[/tex]
[tex]\frac{\epsilon}{D}=\frac{0.15}{10}=0.015[/tex]
From Moody Charts, At above Re and [tex]\frac{\epsilon}{D}[/tex], Value of friction coefficient f is≈0.052.
[tex]P_1=0.052*\frac{4}{0.01}*9800*\frac{(0.5)^2}{2*9.8}-9800*4\\ P_1=-36600N/m^2=-3.6600*10^4 N/m^2[/tex]
[tex]P_1[/tex]<[tex]P_2[/tex] i.e [tex]P_1[/tex]<0. It means air will enter into the pipe.