Respuesta :
Answer:
a) A. Because the population diameter of Ping-Pong balls is approximately normally distributed, the sampling distribution of samples of 4 will also be approximately normal.
b) [tex]P(\bar X <1.28)=P(Z<\frac{1.28-1.32}{\frac{0.08}{\sqrt{4}}}=-1)[/tex]
And using a calculator, excel or the normal standard table we have that:
[tex]P(Z<-1)=0.159[/tex]
c) [tex]P(1.28< \bar X <1.34)=P(\frac{1.28-1.32}{\frac{0.08}{\sqrt{4}}}<Z<\frac{1.34-1.32}{\frac{0.08}{\sqrt{4}}})= P(-1< Z<0.5)[/tex]
And using a calculator, excel or the normal standard table we have that:
[tex]P(-1<Z<0.5)=P(Z<0.5)-P(Z<-1) = 0.691-0.159=0.532 [/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Part a
Let X the random variable that represent the diameter of a brand of ping pong of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(1.32,0.08)[/tex]
Where [tex]\mu=1.32[/tex] and [tex]\sigma=0.08[/tex]
And we select a sample of size n =4 and we want to find the distribution for [tex]\bar X[/tex]
Since the distribution for X is normal then the distribution for the sample mean [tex]\bar X[/tex] is normal and given by:
[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]
So the best option for this case would be:
A. Because the population diameter of Ping-Pong balls is approximately normally distributed, the sampling distribution of samples of 4 will also be approximately normal.
Part b
[tex] P(\bar X<1.28)[/tex]
We can use the z score given by:
[tex]z= \frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]P(\bar X <1.28)=P(Z<\frac{1.28-1.32}{\frac{0.08}{\sqrt{4}}}=-1)[/tex]
And using a calculator, excel or the normal standard table we have that:
[tex]P(Z<-1)=0.159[/tex]
Part c
[tex] P(1.28< \bar X<1.34)[/tex]
[tex]P(1.28< \bar X <1.34)=P(\frac{1.28-1.32}{\frac{0.08}{\sqrt{4}}}<Z<\frac{1.34-1.32}{\frac{0.08}{\sqrt{4}}})= P(-1< Z<0.5)[/tex]
And using a calculator, excel or the normal standard table we have that:
[tex]P(-1<Z<0.5)=P(Z<0.5)-P(Z<-1) = 0.691-0.159=0.532 [/tex]