Respuesta :
Answer:
[tex]y=3.529 x +37.91[/tex]
We can predict the sales representative travelled 8 miles replacing x =8 and we got:
[tex] y(8) = 3.529*8 + 37.91= 66.142[/tex]
And we can predict the sales representative travelled 11 miles replacing x =11 and we got:
[tex] y(11) = 3.529*11 + 37.91= 76.729[/tex]
Step-by-step explanation:
For this case we have the following data:
Miles Traveled x: 2,3,10,7,8,15,3,1,11
Sales y :31,33,78,62,65,61,48,55,120
For this case we need to calculate the slope with the following formula:
[tex]m=\frac{S_{xy}}{S_{xx}}[/tex]
Where:
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}[/tex]
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}[/tex]
So we can find the sums like this:
[tex]\sum_{i=1}^n x_i =60[/tex]
[tex]\sum_{i=1}^n y_i =553[/tex]
[tex]\sum_{i=1}^n x^2_i =582[/tex]
[tex]\sum_{i=1}^n y^2_i =39653[/tex]
[tex]\sum_{i=1}^n x_i y_i =4329[/tex]
With these we can find the sums:
[tex]S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=582-\frac{60^2}{9}=182[/tex]
[tex]S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}=4329-\frac{60*553}{9}=642.33[/tex]
And the slope would be:
[tex]m=\frac{642.33}{182}=3.529[/tex]
Nowe we can find the means for x and y like this:
[tex]\bar x= \frac{\sum x_i}{n}=\frac{60}{9}=6.67[/tex]
[tex]\bar y= \frac{\sum y_i}{n}=\frac{553}{9}=61.44[/tex]
And we can find the intercept using this:
[tex]b=\bar y -m \bar x=61.44-(3.529*6.67)=37.91[/tex]
So the line would be given by:
[tex]y=3.529 x +37.91[/tex]
We can predict the sales representative travelled 8 miles replacing x =8 and we got:
[tex] y(8) = 3.529*8 + 37.91= 66.142[/tex]
And we can predict the sales representative travelled 11 miles replacing x =11 and we got:
[tex] y(11) = 3.529*11 + 37.91= 76.729[/tex]
Answer:
a,b,d
Step-by-step explanation:
because of common sence
UwU