contestada

Which of the following equations defines a line that is parallel to the line begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . minus 4 . . . end equation and passes through the point begin ordered pair . . . 3 . . . comma . . . negative 1 . . . end ordered pair?

A
begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . minus 1 . . . end equation

B
begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . minus 3 . . . end equation

C
begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . plus 1 . . . end equation

D
begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . plus 3 . . . end equation

Respuesta :

Answer:

Option D

[tex]y=-\frac{4}{3}x+3[/tex]

Step-by-step explanation:

step 1

we have

[tex]y=-\frac{4}{3}x-4[/tex] ----> given line

we know that

If two lines are parallel, then their slopes are equal

so

The slope of the given line is

[tex]m=-\frac{4}{3}[/tex]

That means

The slope of the line parallel to the given line is also

[tex]m=-\frac{4}{3}[/tex]

step 2

Find the equation of the line in slope intercept form

[tex]y=mx+b[/tex]

where

m is the slope

b is the y-intercept

we have

[tex]m=-\frac{4}{3}[/tex]

[tex]point\ (3,-1)[/tex]

substitute in the linear equation and solve for b

[tex]-1=-\frac{4}{3}(3)+b[/tex]

[tex]-1=-4+b\\b=3[/tex]

The linear equation is

[tex]y=-\frac{4}{3}x+3[/tex]

therefore

begin equation . . . y equals . . . begin fraction . . . negative 4 over 3 . . . end fraction, times x . . . plus 3 . . . end equation

ACCESS MORE