Respuesta :
Answer:
Part A:
The probability that all of the balls selected are white:
[tex]P(A)=\frac{1}{6}(\frac{1}{3}+\frac{2}{21}+\frac{2}{91}+\frac{1}{273}+\frac{1}{3003}+0)\\ P(A)=\frac{5}{66}=0.075757576[/tex]
Part B:
The conditional probability that the die landed on 3 if all the balls selected are white:
[tex]P(D_3|A)=\frac{\frac{2}{91}*\frac{1}{6}}{\frac{5}{66} } \\P(D_3|A)=\frac{22}{455}=0.0483516[/tex]
Step-by-step explanation:
A is the event all balls are white.
D_i is the dice outcome.
Sine the die is fair:
[tex]P(D_i)=\frac{1}{6}[/tex] for i∈{1,2,3,4,5,6}
In case of 10 black and 5 white balls:
[tex]P(A|D_1)=\frac{5_{C}_1}{15_{C}_1} =\frac{5}{15}=\frac{1}{3}[/tex]
[tex]P(A|D_2)=\frac{5_{C}_2}{15_{C}_2} =\frac{10}{105}=\frac{2}{21}[/tex]
[tex]P(A|D_3)=\frac{5_{C}_3}{15_{C}_3} =\frac{10}{455}=\frac{2}{91}[/tex]
[tex]P(A|D_4)=\frac{5_{C}_4}{15_{C}_4} =\frac{5}{1365}=\frac{1}{273}[/tex]
[tex]P(A|D_5)=\frac{5_{C}_5}{15_{C}_5} =\frac{1}{3003}=\frac{1}{3003}[/tex]
[tex]P(A|D_6)=\frac{5_{C}_6}{15_{C}_6} =0[/tex]
Part A:
The probability that all of the balls selected are white:
[tex]P(A)=\sum^6_{i=1} P(A|D_i)P(D_i)[/tex]
[tex]P(A)=\frac{1}{6}(\frac{1}{3}+\frac{2}{21}+\frac{2}{91}+\frac{1}{273}+\frac{1}{3003}+0)\\ P(A)=\frac{5}{66}=0.075757576[/tex]
Part B:
The conditional probability that the die landed on 3 if all the balls selected are white:
We have to find [tex]P(D_3|A)[/tex]
The data required is calculated above:
[tex]P(D_3|A)=\frac{P(A|D_3)P(D_3)}{P(A)}\\ P(D_3|A)=\frac{\frac{2}{91}*\frac{1}{6}}{\frac{5}{66} } \\P(D_3|A)=\frac{22}{455}=0.0483516[/tex]