Respuesta :
Answer:
The electric potential at the center of the sphere is 36 V.
Explanation:
Given that,
Radius R= 0.600 m
Distance D = 1.20 m
Electric potential = 18.0 V
We need to calculate the electric potential
Using formula of electric potential
[tex]V=\dfrac{kq}{r}[/tex]
Put the value into the formula
[tex]18.0=\dfrac{9\times10^{9}\times q}{1.20}[/tex]
[tex]q=\dfrac{18.0\times1.20}{9\times10^{9}}[/tex]
[tex]q=2.4\times10^{-9}\ C[/tex]
We need to calculate the electric potential at the center of the sphere
Using formula of potential
[tex]V=\dfrac{kq}{r}[/tex]
Put the value into the formula
[tex]V=\dfrac{9\times10^{9}\times2.4\times10^{-9}}{0.600}[/tex]
[tex]V=36\ V[/tex]
Hence, The electric potential at the center of the sphere is 36 V.
The electric potential at the center of the sphere is 36 V.
The given parameters;
- radius of the, R = 0.6 m
- distance of the charge, r = 1.2 m
- potential difference, V = 18 V
The magnitude of the charge is calculated as follows;
[tex]V = \frac{kq}{r} \\\\q = \frac{Vr}{k} \\\\q = \frac{18 \times 1.2}{9\times 10^9} \\\\q = 2.4 \times 10^{-9} \ C[/tex]
The electric potential at the center of the sphere;
[tex]V = \frac{kq}{r} \\\\V = \frac{9\times 10^9 \times 2.4 \times 10^{-9}}{0.6} \\\\V = 36 \ V[/tex]
Thus, the electric potential at the center of the sphere is 36 V.
Learn more here:https://brainly.com/question/14995159