A solid conducting sphere has net positive charge and radiusR = 0.600 m . At a point 1.20 m from the center of the sphere, the electric potential due to the charge on the sphere is 18.0 V . Assume that V = 0 at an infinite distance from the sphere.

What is the electric potential at the center of the sphere?

Respuesta :

Answer:

The electric potential at the center of the sphere is 36 V.

Explanation:

Given that,

Radius R= 0.600 m

Distance D = 1.20 m

Electric potential = 18.0 V

We need to calculate the electric potential

Using formula of electric potential

[tex]V=\dfrac{kq}{r}[/tex]

Put the value into the formula

[tex]18.0=\dfrac{9\times10^{9}\times q}{1.20}[/tex]

[tex]q=\dfrac{18.0\times1.20}{9\times10^{9}}[/tex]

[tex]q=2.4\times10^{-9}\ C[/tex]

We need to calculate the electric potential at the center of the sphere

Using formula of potential

[tex]V=\dfrac{kq}{r}[/tex]

Put the value into the formula

[tex]V=\dfrac{9\times10^{9}\times2.4\times10^{-9}}{0.600}[/tex]

[tex]V=36\ V[/tex]

Hence, The electric potential at the center of the sphere is 36 V.

The electric potential at the center of the sphere is 36 V.

The given parameters;

  • radius of the, R = 0.6 m
  • distance of the charge, r = 1.2  m
  • potential difference, V = 18 V

The magnitude of the charge is calculated as follows;

[tex]V = \frac{kq}{r} \\\\q = \frac{Vr}{k} \\\\q = \frac{18 \times 1.2}{9\times 10^9} \\\\q = 2.4 \times 10^{-9} \ C[/tex]

The electric potential at the center of the sphere;

[tex]V = \frac{kq}{r} \\\\V = \frac{9\times 10^9 \times 2.4 \times 10^{-9}}{0.6} \\\\V = 36 \ V[/tex]

Thus, the electric potential at the center of the sphere is 36 V.

Learn more here:https://brainly.com/question/14995159

ACCESS MORE