Answer:
the price will grow to $ 507,571.77 If it continues with the same grow rate
Explanation:
first we solve for the rate:
2006 - 1895 = 111 years
[tex]Nominal (1+r)^{n} = FV\\150 (1+r)^{111} = 70,000\\\\r = \sqrt[111]{70,000 / 150 } -1[/tex]
r = 0.06
Now we apply this rate for the year 2040:
2040 - 2006 = 34 years
[tex]Principal \: (1+ r)^{time} = Amount[/tex]
Principal 70,000.00
time 34.00
rate 0.06000
[tex]70000 \: (1+ 0.06)^{34} = Amount[/tex]
Amount 507,571.77