Respuesta :
Answer:
the flow rate for steam from the boiler plant = [tex]0.099kg/s[/tex]
the flow rate from the city water = 0.901 kg/s
the rate of entropy production in the mixing tank = 0.2044 kJ/k
Explanation:
In a well-insulated mixing tank where:
[tex]Q_{cv} = 0[/tex] & [tex]W_{cv}=0[/tex]
The mass flow rates can be calculated using the formula:
[tex]Q_cv+m_1h_1+m_2h_2=m_3h_3+W_{cv[/tex] ------ equation (1)
so;
[tex]0+m_1h_1+m_2h_2=m_3h_3+0[/tex] ------- equation (2)
Given that:
From the steam in the boiler plant;
The temperature (T₁) = 200°C
Pressure (P₁) = 10 bar
The following data from compressed water and super-heated steam tables were also obtained at: T₁ = 200°C
h₁ = 2828.27 kJ/kg
s₁ = 6.95 kJ/kg K
m₁ (flow rate for steam in the boiler plant) = ????
Also, for city water
The temperature (T₂) = 20°C
Pressure (P₂) = 1 bar
Data obtained from compressed water and super-heated steam tables are as follows:
h₂ = 84.01 kJ/kg
s₂ = 0.2965 kJ/kg K
m₂ (flow rate for city water) = ???
For stream of hot wat at 85 deg C
Temperature (T₃) = 85°C
h₃([tex]h_f[/tex]) = 355.95 kJ/kg
s₃([tex]s_f[/tex]) = 1.1344 kJ/kg K
m₃ = 1 kg/s
so since:
m₁ + m₂ = m₃ (since m₃ = 1)
m₂ = 1 - m₁
From equation (2);
[tex]0+m_1h_1+m_2h_2=m_3h_3+0[/tex]
= [tex]m_1(2828.27)+(1-m_1)(84.01)=1(355.95)[/tex]
= [tex]2828.27m_1+(84.01-84.01m_1)=(355.95)[/tex]
= [tex]2828.27m_1-84.01m_1=355.95-84.01[/tex]
= [tex]m_1(2828.27-84.01)=355.95-84.01[/tex]
[tex]m_1 = \frac{355.95-84.01}{2828.27-84.01}[/tex]
[tex]m_1 = \frac{271.94}{2744.26}[/tex][tex]m_1 = 0.099 kg/s[/tex]
∴ the flow rate for steam from the boiler plant = [tex]0.099kg/s[/tex]
since; m₂ = 1 - m₁
m₂ = 1 - 0.099 kg/s
m₂ = 0.901 kg/s
∴ the flow rate from the city water = 0.901 kg/s
b)
rate of entropy production in the mixing tank can be determined using the formula:
Δ[tex]S_{production} = m_3}s_3-(m_1s_1+m_2s_2)[/tex]
Δ[tex]S_{production}[/tex] [tex]= (1)(1.1344)-(0.099)(6.6955)-0.901(0.2965)[/tex]
Δ[tex]S_{production}[/tex] [tex]= 1.1344-0.6628545-0.2671465[/tex]
Δ[tex]S_{production}[/tex] [tex]= 1.1344 - 0.930001[/tex]
Δ[tex]S_{production}[/tex] [tex]= 0.204399[/tex]
Δ[tex]S_{production}[/tex] ≅ 0.2044 kJ/k
∴ the rate of entropy production in the mixing tank = 0.2044 kJ/k