Respuesta :
Answer:
Explanation:
- The concept of mach number is applied.
- The mach number is ratio of a body to the speed of sound in surrounding air, i.e object speed divided by speed of sound.
- The mach number is a dimensionless quantity, hence it has no units and dimensions
- The detailed and step by step calculation is as shown in the attached file
![Ver imagen olumidechemeng](https://us-static.z-dn.net/files/d76/c3a7fc63984536f39bc2630424cbee6d.jpg)
Answer:
The Mach number of the throat for supersonic flow = M* = 1
and the Mach number at exit = 2.44
For
a. Pa/Pt = 0.06, Me = 2.484 Supersonic flow
b. when Pa/Pt = 0.9725 Me = 0.1999 ≅ 0.2 or subsonic flow The mach number at the throat could also be determined given the temperature parameter
Explanation:
To solve the question we note that for a supersonic nozzle, the mach number at the throat = 1
Therefore M* = 1
[tex]\frac{A_{e} }{A^{*} } = 2.5[/tex] = [tex]\frac{1}{M_{e} } (\frac{2+(\gamma -1)M_{e} ^{2} }{\gamma +1} )^{\frac{\gamma +1}{2(\gamma -1)} }[/tex] = [tex]\frac{1}{M_{e} } (\frac{2+(0.4)M_{e} ^{2} }{2.4} )^{3 }[/tex] = [tex]\frac{1}{M_{e} } ({2+(0.4)M_{e} ^{2} })^{3 } = 34.56[/tex]
34.56Me = (2+(0.4)M²)³ expanding and collecting like terms we have
Possible solutions of Me = 0.2395, 2.44, 0.90
Since flow is supersonic, Me = 2.44
a)
Solving for [tex]M_{e}[/tex] we have [tex]\frac{P_{a} }{P_{t} } =(1+\frac{\gamma -1}{2} M^{2} _{e} )^{\frac{-\gamma}{\gamma -1} }[/tex]
When Pa/Pt = 0.06 =[tex](1+\frac{1.4 -1}{2} M^{2} _{e} )^{\frac{-1.4}{1.4 -1} }[/tex] = [tex](1+0.2M^{2} _{e} )^{-3.5 }[/tex]
Solving, we get Me = 2.484 Supersonic flow
b)
When Pa/Pt = 0.9725, Me = 0.1999 ≅ 0.2 or subsonic flow