A 10.0-cm-long uniformly charged plastic rod is sealed inside a plastic bag. The net electric flux through the bag is 7.50 × 10 5 N ⋅ m 2 /C . What is the linear charge density (charge per unit length) on the rod?

Respuesta :

Answer:

66.375 x 10⁻⁶ C/m

Explanation:

Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as ;

∅ = Q / ε₀        -----------------(i)

Where;

∅ = 7.5 x 10⁵ Nm²/C

ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²

Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;

7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)

Solve for Q;

Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²

Q = 66.375 x 10⁻⁷ C

Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e

L = Q / l     ----------------------(ii)

Where;

Q = 66.375 x 10⁻⁷ C

l = length of the rod = 10.0cm = 0.1m

Substitute these values into equation (ii) as follows;

L = 66.375 x 10⁻⁷C / 0.1m

L = 66.375 x 10⁻⁶ C/m

Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.

ACCESS MORE