Option B: [tex]11,304 \mathrm{mm} ^2[/tex] is the area of the compact disc.
Explanation:
The diameter of the compact disc is [tex]120mm[/tex].
To determine the area of the compact disc, let us substitute the values in the area of the circle formula,
[tex]A=\pi r^2[/tex] where [tex]r=\frac{d}{2}[/tex]
Substituting the value of d in [tex]r=\frac{d}{2}[/tex], we get,
[tex]r=\frac{120}{2} =60[/tex]
Thus, [tex]r=60[/tex] and [tex]\pi=3.14[/tex]. Let us substitute these values in [tex]A=\pi r^2[/tex], we get,
[tex]A=3.14\times(60)^2[/tex]
Simplifying, we have,
[tex]A=3.14\times3600[/tex]
Multiplying, we get,
[tex]A=11304mm^2[/tex]
Thus, the area of the compact disc is [tex]11,304 \mathrm{mm} ^2[/tex]
Hence, Option B is the correct answer.