Respuesta :
Answer:
The drawing is attached as image and answers along with explanation is provided below.
Step-by-step explanation:
We are given a mass spring damper system to compute the total work done by the restoring force of the spring for 3 different cases.
The work done is given by
[tex]W=\frac{1}{2}k (x^{2}_{0}-x^{2}_{f})[/tex]
Where [tex]k=48.2[/tex] [tex]N/m[/tex] is the spring constant and [tex]x_{0}[/tex] is the initial position and [tex]x_{f}[/tex] is the final position.
Case 1:
[tex]x_{0}=1[/tex]
[tex]x_{f}=3[/tex]
[tex]W=\frac{1}{2}48.2 (1^{2}-3^{2})[/tex]
[tex]W=\frac{1}{2}48.2 (1-9)[/tex]
[tex]W=\frac{1}{2}48.2 (-8)[/tex]
[tex]W=48.2 (-4)[/tex]
[tex]W=-192.8[/tex] [tex]joules[/tex]
Case 2:
[tex]x_{0}=-3[/tex]
[tex]x_{f}=1[/tex]
[tex]W=\frac{1}{2}48.2 ((-3)^{2}-1^{2})[/tex]
[tex]W=\frac{1}{2}48.2 (9-1)[/tex]
[tex]W=\frac{1}{2}48.2 (8)[/tex]
[tex]W=48.2 (4)[/tex]
[tex]W=192.8[/tex] [tex]joules[/tex]
Case 3:
[tex]x_{0}=-3[/tex]
[tex]x_{f}=3[/tex]
[tex]W=\frac{1}{2}48.2 ((-3)^{2}-3^{2})[/tex]
[tex]W=\frac{1}{2}48.2 (9-9)[/tex]
[tex]W=\frac{1}{2}48.2 (0)[/tex]
[tex]W=0[/tex] [tex]joules[/tex]
makes sense because initial and final positions are equal in magnitude but are opposite in sign therefore, net work done is zero.
![Ver imagen nafeesahmed](https://us-static.z-dn.net/files/dad/45eaf150481cbd4aa5efed2e0220fe74.png)