Answer:
The t-score is -1.8432
Step-by-step explanation:
We are given the following in the question:
98, 99.6, 97.8, 97.6, 98.7, 98.4, 98.9, 97.1, 99.2, 97.4, 99.1, 96.9, 98.8, 99.9, 96.8, 97, 98.7, 97.6, 98.7, 98.2
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{1964.4}{20} = 98.22[/tex]
Sum of squares of differences = 16.152
[tex]s = \sqrt{\dfrac{16.152}{49}} = 0.922[/tex]
Population mean, μ = 98.6
Sample mean, [tex]\bar{x}[/tex] = 98.22
Sample size, n = 20
Sample standard deviation, s = 0.922
First, we design the null and the alternate hypothesis
[tex]H_{0}: \mu = 98.6\\H_A: \mu < 98.6[/tex]
Formula:
[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]
Putting all the values, we have
[tex]t_{stat} = \displaystyle\frac{98.22 - 98.6}{\frac{0.922}{\sqrt{20}} } = -1.8432[/tex]
The t-score is -1.8432