Respuesta :
Answer:
(a) [tex]x'(t)= 142[/tex]
(b) 142
(c) [tex]y'(t)= -32t+5[/tex]
(d) 96.8 mph
(e) 0.426 s
(f) 0.061 rad
Explanation:
Velocity is a time-derivative of position.
(a) [tex]x(t) = 142t[/tex]
[tex]x'(t)= 142[/tex]
(b) Since [tex]x'(t)= 142[/tex] is independent of [tex]t[/tex], it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.
(c) [tex]y(t) = - 16t^2+5t+5[/tex]
[tex]y'(t)= -32t+5[/tex]
(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to [tex]x(t)[/tex].
[tex]x(t)= 142t = 60.5[/tex]
[tex]t=\dfrac{60.5}{142}= 0.426[/tex].
In this time, the vertical velocity, [tex]y'(t)[/tex] is
[tex]y(t)= -32\times0.426+5 = -8.632[/tex]
The speed of the ball at thus point is [tex]s=\sqrt{142^2+(-8.632)^2}=142[/tex] ft/s
To convert this to mph, we multiply the factor 3600/5280
[tex]s=142\times\dfrac{3600}{5280}=96.8 \text{ mph}[/tex]
(e) The time has been determined from (d) above.
[tex]t= 0.426[/tex]
(f) This angle is given by
[tex]\theta=\tan^{-1}\dfrac{y'(t)}{x'(t)}[/tex]
[tex]\theta=\tan^{-1}\dfrac{-8.632}{142}=\tan^{-1}-0.0607=3.47[/tex] (Note here we are considering the acute angle so we ignore the negative sign)
In radians, this is
[tex]\theta=3.47\times\dfrac{\pi}{180}=0.061 \text{ rad}[/tex]