Respuesta :

Step-by-step explanation:

∫₋₂² (f(x) + 6) dx

Split the integral:

∫₋₂² f(x) dx + ∫₋₂² 6 dx

Graphically, if f(-x) = -f(x), then ∫₋₂² f(x) dx = 0.  But we can also show this algebraically.

Split the first integral:

∫₋₂⁰ f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx

Using substitution, write the first integral in terms of -x.

∫₂⁰ f(-x) d(-x) + ∫₀² f(x) dx + ∫₋₂² 6 dx

-∫₂⁰ f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx

Flip the limits and multiply by -1.

∫₀² f(-x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx

Rewrite f(-x) as -f(x).

∫₀² -f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx

-∫₀² f(x) dx + ∫₀² f(x) dx + ∫₋₂² 6 dx

The integrals cancel out:

∫₋₂² 6 dx

Evaluating:

6x |₋₂²

6 (2 − (-2))

24

ACCESS MORE