Respuesta :
Answer:
a) 35.75 ft/s
b) 45 ft
Explanation:
Given
Weight W = 100 lbf
mass(m) = 100*32.174/32.2=99.92 lb
decrease in kinetic energy ΔKE = -500 ft.lbf
increase in kinetic energy ΔPE= 1500 ft.lbf
initial velocity V_1 = 40 ft/s
initial height h_1 = 30 ft/s
The gravitational acceleration g = 32.2 ft/s2 Required
(a) Final velocity V_2 (a) Final elevation h_2
Solution
Change in kinetic energy is defined by
ΔKE = .5*m *( V_2 ^2-V_1^2)
Change in potential energy is defined by
ΔKE = W *( h_2 -h_1 )
Then,
-500=.5*99.92*1/32.174*(V_2 ^2-40^2)
V_2=35.75 ft/s
1500 = 100 x (h_2 — 30)
h_2= 45 ft
Answer:
A. 43.84 ft/s.
B. 45 ft.
Explanation:
A.
Given:
Weight, W = 100 lbf
mass, M = 100/32.174
= 3.108 lb
kinetic energy, ΔKE = -500 ft.lbf
Potential energy ΔPE= 1500 ft.lbf
initial velocity, u = 40 ft/s
initial height, h1 = 30 ft/s
acceleration, g = 32.174 ft/s^2
ΔKE = 1/2 * M * (v^2 - u^2)
-500 = 1/2 * 3.108 * (v^2 - 40^2)
v = 43.84 ft/s.
B.
ΔPE = M * g * (h2 - h1)
1500 = 3.108 * 32.174 * (h2 - 30)
h2 = 45 ft.