Respuesta :
Answer:
Approximately [tex]0.245\; \rm M[/tex]. (Moles-per-liter.)
Explanation:
[tex]\rm 2\; SO_3\; (g) \to 2\; SO_2\; (g) + O_2\; (g)[/tex].
[tex]\rm SO_3\; (g)[/tex] is the only reactant in this reaction. Only the concentration of
Let [tex]x = \left[\rm SO_3\; (g)\right][/tex] (that's the concentration of [tex]\rm SO_3\; (g)[/tex].) By "second-order" kinetics, the question likely means that the rate of change in [tex]x[/tex] (with respect to time [tex]t[/tex]) is proportional to [tex]x^2[/tex]. In other words,
[tex]\displaystyle -\frac{dx}{dt} = k\, x^2[/tex],
where [tex]k[/tex] is the rate constant of the reaction. Note the negative sign in front of the fraction. Reactants are consumed in a reaction, so their concentrations would become smaller.
Rearrange the equation to separate the variables:
[tex]-\displaystyle \frac{1}{x^2}\, dx = k\, dt[/tex].
Integrate both sides using the power rule for integration:
[tex]\displaystyle \int -\frac{1}{x^2}\, dx = \int k\, dt[/tex].
[tex]\implies \displaystyle \frac{1}{x} = k\,t + C[/tex].
The value of [tex]C[/tex] here is fixed; its exact value depends on the initial concentration of the reaction. Rearrange to obtain an equation for [tex]x[/tex] (concentration) with respect to [tex]t[/tex] (time.)
[tex]x = \displaystyle \frac{1}{k\, t + C}[/tex].
The concentration of [tex]\rm SO_3\; (g)[/tex] was [tex]1.44\; \rm M[/tex] at the beginning of the reaction. As a result, [tex]C[/tex] should ensure that [tex]x = 1.44[/tex] at [tex]t = 0[/tex].
Let [tex]x = 1.44[/tex], [tex]t = 0[/tex], and solve for [tex]C[/tex]:
[tex]\displaystyle 1.44 = \frac{1}{C}[/tex].
[tex]C \approx 0.694[/tex].
According to the question, [tex]k = 14.1[/tex]. Calculate the value of [tex]x[/tex] when [tex]t = 0.240[/tex]:
[tex]\begin{aligned}x &= \frac{1}{k\,t + C} \\ &= \frac{1}{14.1 \times 0.240 + 0.694} \\ &\approx 0.245\end{aligned}[/tex].
Hence, the concentration of [tex]\rm SO_3\; (g)[/tex] is approximately [tex]0.245\; \rm M[/tex] after [tex]0.240\; \rm s[/tex].