How many revolutions per minute would a 26 m -diameter Ferris wheel need to make for the passengers to feel "weightless" at the topmost point?

Respuesta :

Answer:[tex]N=8.28\ rpm[/tex]

Explanation:

Given

Diameter of wheel [tex]d=26\ m[/tex]

Person is feeling Weightlessness i.e. Net force on the person is equivalent to its weight

At top point weight is equal to Centripetal force

[tex]mg=\frac{mv^2}{r}[/tex]

where v=velocity of wheel

thus

[tex]g=\frac{v^2}{R}[/tex]

[tex]v=\sqrt{gR}[/tex]

[tex]v=\sqrt{9.8\times 13}[/tex]

[tex]v=11.28\ m/s[/tex]

[tex]v=\frac{\pi d\cdot N}{60}[/tex]

[tex]11.28=\frac{\pi \cdot 26\cdot N}{60}[/tex]

[tex]N=8.28\ rpm[/tex]

Answer:

Explanation:

Let m be the mass of passenger.

diameter of wheel, d = 26 m

radius of wheel, r = half of diameter = 13 m

Let ω be the angular velocity of the Ferris wheel.

A the passengers becomes weightless, so the centripetal force acting on the passengers is balanced by the weight of passengers.

mg = m r ω²

9.8 = 12 x ω²

ω = 0.9 rad/s

Let f be the frequency

ω = 2 π f

0.9 = 2 x 3.14 x f

f = 0.143 revolutions per second

Number of revolutions per minute = 0.143 x 60

                                                         = 8.6 revolutions per minute

ACCESS MORE