Respuesta :
Answer:
112.11 V
Explanation:
The electromotive force, e.m.f, (E) of the generator is related to its terminal voltage(V) and the current (I) it delivers as follows;
E = V + (I x r) -------------------------(i)
Where;
r = the internal resistance of the generator
Now, as stated in the question;
at V = 108V, I = 10.2A
Substitute the values into equation (i) as follows;
E = 108 + (10.2 x r)
E = 108 + 10.2r ------------------(ii)
Also, as stated in the question;
at V = 93V, I = 47.4A
Substitute these values also into equation (i) as follows;
E = 93 + (47.4 x r)
E = 93 + 47.4r ------------------------(iii)
Now solve equations (ii) and (iii) simultaneously;
Subtract equation (iii) from (ii)
E = 108 + 10.2r
_
E = 93 + 47.4r
______________
0 = 15 - 37.2r ----------------(iv)
_______________
Solve for r in equation (iv)
37.2r = 15
r = 15 / 37.2
r = 0.403Ω
The internal resistance is therefore 0.403Ω
Substitute r = 0.403Ω into equation (ii);
E = 108 + 10.2(0.403)
E = 108 + 4.11
E = 112.11
Therefore, the emf is 112.11 V
The electromotive force (emf) produced in the generator is 112.1126 Volts.
Given the following data:
- Terminal voltage A = 108 V
- Current A = 10.2 Amps
- Terminal voltage B = 93 V
- Current A = 47.4 Amps
To calculate the electromotive force (emf) produced in the generator:
Mathematically, the electromotive force (emf) is given by the formula:
[tex]E = V + Ir[/tex]
For the first instance A:
[tex]E = 108 + 10.2r[/tex] .....equation 1.
For the first instance B:
[tex]E = 93 + 47.4r[/tex] .....equation 2.
Next, we would equate eqn 1 and eqn 2:
[tex]108 + 10.2r = 93 + 47.4r\\\\108 - 93 = 47.4r - 10.2r\\\\15 = 37.2r\\\\r = \frac{15}{37.2}[/tex]
Internal resistance, r = 0.4032 Ohms
Now, we can calculate the electromotive force (emf) produced in the generator:
[tex]E = 108 + 10.2r\\\\E = 108 + 10.2(0.4032)\\\\E = 108 + 4.1126[/tex]
Emf, E = 112.1126 Volts.
Read more: https://brainly.com/question/15121836?referrer=searchResults