Answer:
Thus the path intersect twice at(3,9,27) when [tex]s=\frac{1}{2}[/tex] and t=3 and (1,1,1)when
s=0 and t=1.
The particles do not collide.
Step-by-step explanation:
r₁(t)=(t,t²,t³) and r₂(t)=(1+4t,1+6t,1+52t)
If the particles collide provided r₁(t)=r₂(t)
(t,t²,t³)=(1+4t,1+6t,1+52t)
Equating the equation,
t=1+4t
[tex]\Rightarrow t-4t=1[/tex]
[tex]\Rightarrow t=-\frac{1}{3}[/tex]
and t² = 1+6t
[tex]\Rightarrow (-\frac{1}{3})^2= 1+6\times(- \frac{1}{3} )[/tex]
so this equation does not satisfy [tex]t=-\frac{1}{3}[/tex]
So the particles do not collide.
For the path intersection r₁(t) = r₂(s)
⇒(t,t²,t³)= (1+4s,1+16s,1+52s)
Therefore
t=1+4s..........(1) t²=1+16s..........(2) t³=1+52s..........(3)
Putting t=1+4s in equation (2)
(1+4s)²=1+16s
⇒1+8s+16s²=1+16s
⇒16s²-8s=0
⇒8s(2s-1)=0
[tex]\Rightarrow s =0\ and \ \frac{1}{2}[/tex]
When s=0 , t =1+4.0=1
when [tex]s=\frac{1}{2}[/tex], t=1+2=3
Putting s=0 and t=1 in equation (3)
1³=1+52.0
⇒1=1
Again putting [tex]s=\frac{1}{2}[/tex] and t=3
3³= 1+26
⇒27=27
Therefore s=0 and t=1 satisfies the third equation and [tex]s=\frac{1}{2}[/tex] and t=3 also satisfies the third equation.
Thus the path intersect twice at(3,9,27) when [tex]s=\frac{1}{2}[/tex] and t=3 and (1,1,1)when
s=0 and t=1.