A ball is thrown horizontally from the top of a 20-m high hill. It strikes the ground at an angle of 45o45o . With what speed was it thrown?

Respuesta :

Answer:

V = 19.79 m/s

Explanation:

given,

height of the hill, h = 20 m

angle of strike,θ = 45°

Speed of thrown = ?

using equation of motion for time calculation

[tex]s = ut+\dfrac{1}{2}gt^2[/tex]

[tex]t = \sqrt{\dfrac{2s}{g}}[/tex]

[tex]t = \sqrt{\dfrac{2\times 20}{9.8}}[/tex]

  t = 2.02 s

Horizontal velocity = v_x = V

Vertical velocity = v_y= g t

                              v_y = 9.8 x 2.02 = 19.79 m/s

now, we know,

[tex]tan \theta = \dfrac{v_y}{v_x}[/tex]

[tex]tan 45^0 = \dfrac{19.79}{V}[/tex]

  V = 19.79 m/s

Hence, the speed at which ball was thrown is equal to 19.79 m/s.

The speed will be "19.79 m/s".

Given:

Height of the hill,

  • h = 20 m

Angle of strike,

  • [tex]\Theta[/tex] = 45°

By using the equation of motion, we get

→ [tex]s = ut +\frac{1}{2} gt^2[/tex]

or,

→ [tex]t = \sqrt{\frac{2s}{g} }[/tex]

By substituting the values, we get

→    [tex]= \sqrt{\frac{2\times 20}{9.8} }[/tex]

→    [tex]= 2.02 \ s[/tex]

Now,

Horizontal velocity,

  • [tex]v_x = V[/tex]

Vertical velocity,

  • [tex]v_y = gt[/tex]

            [tex]= 9.8\times 2.02[/tex]

            [tex]= 19.79 \ m/s[/tex]    

As we know,

→ [tex]tan \Theta = \frac{v_y}{v_x}[/tex]

[tex]tan 45^{\circ} = \frac{19.79}{V}[/tex]

        [tex]V = 19.79 \ m/s[/tex]

Thus the response above is correct.

Learn more:

https://brainly.com/question/16738360

ACCESS MORE