Respuesta :
Answer:
V = 19.79 m/s
Explanation:
given,
height of the hill, h = 20 m
angle of strike,θ = 45°
Speed of thrown = ?
using equation of motion for time calculation
[tex]s = ut+\dfrac{1}{2}gt^2[/tex]
[tex]t = \sqrt{\dfrac{2s}{g}}[/tex]
[tex]t = \sqrt{\dfrac{2\times 20}{9.8}}[/tex]
t = 2.02 s
Horizontal velocity = v_x = V
Vertical velocity = v_y= g t
v_y = 9.8 x 2.02 = 19.79 m/s
now, we know,
[tex]tan \theta = \dfrac{v_y}{v_x}[/tex]
[tex]tan 45^0 = \dfrac{19.79}{V}[/tex]
V = 19.79 m/s
Hence, the speed at which ball was thrown is equal to 19.79 m/s.
The speed will be "19.79 m/s".
Given:
Height of the hill,
- h = 20 m
Angle of strike,
- [tex]\Theta[/tex] = 45°
By using the equation of motion, we get
→ [tex]s = ut +\frac{1}{2} gt^2[/tex]
or,
→ [tex]t = \sqrt{\frac{2s}{g} }[/tex]
By substituting the values, we get
→ [tex]= \sqrt{\frac{2\times 20}{9.8} }[/tex]
→ [tex]= 2.02 \ s[/tex]
Now,
Horizontal velocity,
- [tex]v_x = V[/tex]
Vertical velocity,
- [tex]v_y = gt[/tex]
[tex]= 9.8\times 2.02[/tex]
[tex]= 19.79 \ m/s[/tex]
As we know,
→ [tex]tan \Theta = \frac{v_y}{v_x}[/tex]
[tex]tan 45^{\circ} = \frac{19.79}{V}[/tex]
[tex]V = 19.79 \ m/s[/tex]
Thus the response above is correct.
Learn more:
https://brainly.com/question/16738360