Respuesta :
Question # 1
Answer:
25 is the factor which grows by between x = 5 and x = 7.
Step-by-step explanation:
Considering the exponential function
[tex]f\left(x\right)\:=\:3\left(5\right)^x[/tex]
The growth factor between [tex]x=1[/tex] and [tex]x=3[/tex] is given by:
[tex]\left[3\left(5\right)^3\right]\div \left[3\left(5\right)^1\right][/tex]
[tex]\mathrm{Calculate\:within\:parentheses}\:\left[3\left(5\right)^3\right]\::\quad 375[/tex]
[tex]\mathrm{Calculate\:within\:parentheses}\:\left[3\left(5\right)^1\right]\::\quad 15[/tex]
So,
= [tex]375\div \:15[/tex]
= [tex]25[/tex]
Similarly, growth factor between [tex]x=5[/tex] and [tex]x=7[/tex] is given by:
[tex]\left[3\left(5\right)^7\right]\div \left[3\left(5\right)^5\right][/tex]
= [tex]\frac{3\cdot \:5^7}{3\cdot \:5^5}[/tex]
[tex]\mathrm{Divide\:the\:numbers:}\:\frac{3}{3}=1[/tex]
= [tex]\frac{5^7}{5^5}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \frac{x^a}{x^b}=x^{a-b}[/tex]
[tex]\frac{5^7}{5^5}=5^{7-5}[/tex]
= [tex]5^{7-5}[/tex]
= [tex]5^2[/tex]
= [tex]25[/tex]
Therefore, 25 is the factor which grows by between x = 5 and x = 7.
Question # 2
Answer:
The population be in 24 years will be 27000.
Also, the population growth modeled by an exponential function as [tex]y=A\cdot \left(b\right)^t[/tex] is an exponential function.
The graph for [tex]y=A\cdot \left(b\right)^t[/tex] is also shown in attached figure.
Step-by-step explanation:
- If a city that currently has a population of 1000 triples in size every 8 years.
- what will the population be in 24 years?
- Is the population growth modeled by a linear function or an exponential function?
As the city that currently has a population of 1000 triples in size every 8 years.
So, for this case
[tex]y=A\cdot \left(b\right)^t[/tex]
where
[tex]A[/tex] = Initial population amount
[tex]b[/tex] = growth rate
[tex]t[/tex] = time
Substituting the values in the function
[tex]y=A\cdot \left(b\right)^t[/tex]
[tex]y=1000\cdot \:\:3^{\frac{1}{8}t}[/tex]
So, the population be in 24 years
[tex]y=1000\cdot \:\:3^{\frac{1}{8}24}[/tex]
As
[tex]3^{\frac{1}{8}\cdot \:24}=3^3[/tex]
So
[tex]\:y=3^3\cdot 1000[/tex]
[tex]y=1000\cdot \:\:27[/tex]
[tex]y=27000[/tex]
Therefore, the population be in 24 years will be 27000.
Also, the population growth modeled by an exponential function as [tex]y=A\cdot \left(b\right)^t[/tex] is an exponential function.
Question # 3
Answer:
the graph of the function will translate horizontally 3/5 units right.
Step-by-step explanation:
We have to find the effect on the graph of the function [tex]f(x)=2x[/tex] when it is replaced by f(x- 3/5).
We already have an idea that rule for horizontal translation:
- Given a function [tex]f(x)[/tex], and a constant c > 0, the function [tex]g(x) = f(x - a)[/tex] represents a horizontal shift c units to the right from f(x). The function [tex]h(x) = f(x + a)[/tex] represents a horizontal shift c units to the left.
As 3/5 > 0, so the graph of the function will translate horizontally 3/5 units right.
Therefore, the graph of the function will translate horizontally 3/5 units right.
Keywords: exponential function, translation function, growth factor
Learn more about exponential function and growth factor form brainly.com/question/10147339
#learnwithBrainly