Answer: The molar mass of unknown molecule is 157.07 g/mol
Explanation:
The equation used to calculate relative lowering of vapor pressure follows:
[tex]\frac{p^o-p_s}{p^o}=i\times \chi_{solute}[/tex]
where,
[tex]\frac{p^o-p_s}{p^o}[/tex] = relative lowering in vapor pressure
i = Van't Hoff factor = 1 (for non electrolytes)
[tex]\chi_{solute}[/tex] = mole fraction of solute = ?
[tex]p^o[/tex] = vapor pressure of pure acetone = 400 torr
[tex]p_s[/tex] = vapor pressure of solution = 361.8 torr
Putting values in above equation, we get:
[tex]\frac{400-361.8}{400}=1\times\chi_{A}\\\\\chi_{A}=0.0955[/tex]
This means that 0.0955 moles of unknown molecule is present in the solution
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Moles of unknown molecule = 0.0955 moles
Mass of unknown molecule = 15.0 grams
Putting values in above equation, we get:
[tex]0.0955mol=\frac{15.0g}{\text{Molar mass of unknown molecule}}\\\\\text{Molar mass of unknown molecule}=\frac{15.0g}{0.0955mol}=157.07g/mol[/tex]
Hence, the molar mass of unknown molecule is 157.07 g/mol