Respuesta :
Answer:
The mean of function provided is 1.186.
The variance of the provided f(x) is 0.198
Step-by-step explanation:
It is provided that the probability mass function is,
f(x)= (214/43)×(1/6)ˣ; x=1,2,3
The mean is calculated as,
E(X)=∑ x × f(x)
x
=1×(216/43)×(1/6)¹ + 2 × (216/43)×(1/6)² × 3 × (216/43)×(1/6)³
=36/43 + 12/43 +3/43
=1.186
The mean of function provided is 1.186
Explanation | Common mistakes | Hint for next step
The expected value of the probability mass function,f(x)= (216/43×(1/6)ˣ
is 1.1861.186 .
Step 2 of 2
To calculate the variance, first calculate E(X²)=∑ x² × f(x)
= 1² ×(216/43) × (1/6)¹ + 2² × (216/43) × (1/6)² × 3² × (216/43) ×(1/6)³
=36/43 +24/43 +9/43
=1.605
The variance is calculated as,
V(X) =E(X²) - [E(X)]²
=1.605 -(1.186)²
= 0.198
The variance of the provided f(x) is 0.198
Explanation | Common mistakes
The variance of function f(x)=(216/43) × (1/6)ˣ ; x =1,2,3 is 0.198
The mean and variance of the random variable with the given probability mass function is 1.186 and 0.198 respectively and this can be determined by using the formula of mean and variance.
Given :
[tex]f(x) = \left(\dfrac{216}{43}\right)\times \left(\dfrac{1}{6}\right)^x[/tex]
The mean can be evaluated by using the following calculation:
[tex]\rm E(x) = \sum x\times f(x)[/tex]
[tex]\rm E(x) = 1\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^1+ 2\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^2+ 3\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^3[/tex]
[tex]\rm E(x) = \dfrac{36}{43}+\dfrac{12}{43}+\dfrac{3}{43}[/tex]
E(x) = 1.186
The variance can be evaluated by using the following calculation.
[tex]\rm E(x^2)=\sum x^2 f(x)[/tex]
[tex]\rm E(x^2) = 1^2\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^1+ 2^2\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^2+ 3^2\times \left(\dfrac{216}{43}\right) \times \left(\dfrac{1}{6}\right)^3[/tex]
[tex]\rm E(x^2) = \dfrac{36}{43}+\dfrac{24}{43}+\dfrac{9}{43}[/tex]
[tex]\rm E(x^2) = 1.605[/tex]
Now, the variance is given by:
[tex]\rm V(x) = E(x^2)-[E(x)]^2[/tex]
[tex]\rm V(x) = 1.605-(1.186)^2[/tex]
V(x) = 0.198
The variance is 0.198 and the mean is 1.186.
For more information, refer to the link given below:
https://brainly.com/question/23910632