Respuesta :
Answer:
4.844 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 3.2, \sigma = 0.8[/tex]
Top 2%.
X when Z has a pvalue of 1-0.02 = 0.98. So X when Z = 2.055.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]2.055 = \frac{X - 3.2}{0.8}[/tex]
[tex]X - 3.2 = 2.055*0.8[/tex]
[tex]X = 4.844[/tex]
Answer:
The weight of the citation designation should be at 4.8432 pounds.
Explanation:
Given
Mean [tex]= 3.2 pounds.[/tex]
Standard deviation[tex]= 0.8 pound.[/tex]
Step 1:
Consider 'y' as one of the top weight, that is, [tex]y = 2 \% = 2.054 pounds.[/tex]
Let 'x' be the weight of the citation designation.
[tex]y = \frac{x-mean}{standard\ deviation}[/tex]
[tex]=2.054 = \frac{x-3.2}{0.8}[/tex]
[tex]=2.054\times 0.8 = x-3.2[/tex]
[tex]=1.6432 = x-3.2[/tex]
[tex]x = 1.6432+3.2[/tex]
[tex]x = 4.8432[/tex]
Thus, at 4.8432 pounds citation designation be established.
To learn more about citation, refer:
- https://brainly.com/question/18675815