Answer:
[tex]32,24,18,\frac{27}{2} ,\frac{81}{8}[/tex]
Step-by-step explanation:
Let x, y , and z be the numbers.
Then the geometric sequence is [tex]32,x,y,z,\frac{81}{8}[/tex]
Recall that term of a geometric sequence are generally in the form:
[tex]a,ar,ar^2,ar^3,ar^4[/tex]
This implies that:
a=32 and [tex]ar^4=\frac{81}{8}[/tex]
Substitute a=32 and solve for r.
[tex]32r^3=\frac{81}{8}[/tex]
[tex]r^4=\frac{81}{256}[/tex]
Take the fourth root to get:
[tex]r=\sqrt[4]{\frac{81}{256} }[/tex]
[tex]r=\frac{3}{4}[/tex]
Therefore [tex]x=32*\frac{3}{4} =24[/tex]
[tex]y=24*\frac{3}{4} =18[/tex]
[tex]z=18*\frac{3}{4} =\frac{27}{2}[/tex]