Option C: [tex]f(x)=2^x[/tex] is the function rule.
Explanation:
The sequence is [tex]2,4,8,16, \dots \dots[/tex]
Let us find the common difference of this sequence.
Common ratio = [tex]\frac{4}{2} =2[/tex]
Hence, [tex]r=2[/tex]
Thus, the given sequence is a geometric progression.
To determine the function rule, let us substitute the values in the general formula of GP which is given by
[tex]f(x)=ar^{x-1}[/tex] where [tex]a=2, r=2[/tex]
Substituting we get,
[tex]f(x)=2(2)^{x-1}[/tex]
Simplifying, we get,
[tex]f(x)=2\times2^x\times2^{-1[/tex]
Adding the powers, we get,
[tex]f(x)=2^{1+x-1}[/tex]
Simplifying, we get,
[tex]f(x)=2^x[/tex]
Hence, the function rule is [tex]f(x)=2^x[/tex]
Thus, Option C is the correct answer.