Given the sequence 2, 4, 8, , 16,........, where x = 0, 1, 2, 3, .......what is the function rule? f(x) = 2x + 2 f(x) = 2(2)x f(x) = (2x) f(x) = 2

Respuesta :

Option C: [tex]f(x)=2^x[/tex] is the function rule.

Explanation:

The sequence is [tex]2,4,8,16, \dots \dots[/tex]

Let us find the common difference of this sequence.

Common ratio = [tex]\frac{4}{2} =2[/tex]

Hence, [tex]r=2[/tex]

Thus, the given sequence is a geometric progression.

To determine the function rule, let us substitute the values in the general formula of GP which is given by

[tex]f(x)=ar^{x-1}[/tex] where [tex]a=2, r=2[/tex]

Substituting we get,

[tex]f(x)=2(2)^{x-1}[/tex]

Simplifying, we get,

[tex]f(x)=2\times2^x\times2^{-1[/tex]

Adding the powers, we get,

[tex]f(x)=2^{1+x-1}[/tex]

Simplifying, we get,

[tex]f(x)=2^x[/tex]

Hence, the function rule is [tex]f(x)=2^x[/tex]

Thus, Option C is the correct answer.

ACCESS MORE