A particular concentration of a chemical found in polluted water has been found to be lethal to 20% of the fish that are exposed to the concentration for 24 hours. Twenty fish are placed in a tank containing this concentration of chemical in water. a) Find the probability that exactly 14 survive. b) Find the probability that at least 10 survive. c) Find the probability that at most 16 survive. d) Find the mean and variance of the number that survive.

Respuesta :

Answer:

a) [tex]P(X=14)=(20C14)(0.8)^{14} (1-0.8)^{20-14}=0.109[/tex]

b) [tex]P(X\geq 10) = 1-P(X \leq 9) = 0.9994[/tex]

c) [tex]P(X \leq 16)= 1-P(X>16) =1-P(X \geq 17)= 1- [P(X=17) +...+P(X=20)]=0.589[/tex]

d) [tex] E(X)= np = 20 *0.8 = 16[/tex]

[tex] Var(X) = np(1-p) = 20*0.8*(1-0.8) = 3.2[/tex]

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Let X the random variable of interest, on this case we now that:

[tex]X \sim Binom(n=20, p=1-0.2=0.8)[/tex]

The probability mass function for the Binomial distribution is given as:

[tex]P(X)=(nCx)(p)^x (1-p)^{n-x}[/tex]

Where (nCx) means combinatory and it's given by this formula:

[tex]nCx=\frac{n!}{(n-x)! x!}[/tex]

Part a

For this case we want this probability:

[tex] P(X=14)[/tex]

And using the mass function we have this:

[tex]P(X=14)=(20C14)(0.8)^{14} (1-0.8)^{20-14}=0.109[/tex]

Part b

For this case we want this probability:

[tex] P(X \geq 10)[/tex]

And we can find this using the complement rule:

[tex] P(X\geq 10) = 1-P(X<10) = 1-P(X \leq 9)= 1-[P(X=0)+.....+P(X=9)][/tex]

[tex]P(X=0)=(20C0)(0.8)^{0} (1-0.8)^{20-0}=1.05x10^{-14}[/tex]

[tex]P(X=1)=(20C1)(0.8)^{1} (1-0.8)^{20-1}=8.39x10^{-13}[/tex]

[tex]P(X=2)=(20C2)(0.8)^{2} (1-0.8)^{20-2}=3.19x10^{-11}[/tex]

[tex]P(X=3)=(20C3)(0.8)^{3} (1-0.8)^{20-3}=7.65x10^{-10}[/tex]

[tex]P(X=4)=(20C4)(0.8)^{4} (1-0.8)^{20-4}=1.30x10^{-8}[/tex]

[tex]P(X=5)=(20C5)(0.8)^{5} (1-0.8)^{20-5}=1.66x10^{-7}[/tex]

[tex]P(X=6)=(20C6)(0.8)^{6} (1-0.8)^{20-6}=1.66x10^{-6}[/tex]

[tex]P(X=7)=(20C7)(0.8)^{7} (1-0.8)^{20-7}=1.33x10^{-5}[/tex]

[tex]P(X=8)=(20C8)(0.8)^{8} (1-0.8)^{20-8}=8.65x10^{-5}[/tex]

[tex]P(X=9)=(20C9)(0.8)^{9} (1-0.8)^{20-9}=0.00046[/tex]

And if we replace we got:

[tex]P(X\geq 10) = 1-P(X \leq 9) = 0.9994[/tex]

Part c

For this case we want this probability:

[tex] P(X \leq 16)[/tex]

And we can use the complement rule like this:

[tex] P(X \leq 16)= 1-P(X>16) =1-P(X \geq 17)= 1- [P(X=17) +...+P(X=20)][/tex]

[tex]P(X=17)=(20C17)(0.8)^{17} (1-0.8)^{20-17}=0.205[/tex]

[tex]P(X=18)=(20C18)(0.8)^{18} (1-0.8)^{20-18}=0.137[/tex]

[tex]P(X=19)=(20C19)(0.8)^{19} (1-0.8)^{20-19}=0.0576[/tex]

[tex]P(X=20)=(20C20)(0.8)^{20} (1-0.8)^{20-20}=0.0115[/tex]

And if we replace we got:

[tex]P(X \leq 16)= 1-P(X>16) =1-P(X \geq 17)= 1- [P(X=17) +...+P(X=20)]=0.589[/tex]

Part d

The expected value is given by:

[tex] E(X)= np = 20 *0.8 = 16[/tex]

[tex] Var(X) = np(1-p) = 20*0.8*(1-0.8) = 3.2[/tex]