Given:
[tex]A= km\\\\\varepsilon_0 =3\times 10^{-8} \ M= 0.03\ mM= 30 \mu M\\\\V_0= V_{max}=V= 15 \frac{\mu M}{min}\\\\s >> km\\\\[/tex]
To find:
[tex]K_{cat}=?[/tex]
Solution:
Using formula:
[tex]\to V_{max}= k_{cat} [\varepsilon_0 ]\\\\[/tex]
putting the value in the above-given formula:
[tex]\to \frac{15\mu M}{min}=\frac{k_{cat}}{[\varepsilon_0]}\\\\\to \frac{15\mu M}{min}=\frac{k_{cat}}{30\mu M}\\\\\to K_{cat}= 15 \times 30 \ \frac{\mu \ M^2}{min}[/tex]
[tex]= 450 \ \frac{\mu \ M^2}{min}\\\\[/tex]
Therefore, the final answer is "[tex]450 \ \frac{\mu \ M^2}{min}\\\\[/tex]".
Find out more information about reactions here:
brainly.com/question/25752442