A cubic box with sides of 20.0 cm contains 2.00 × 1023 molecules of helium with a root-mean-square speed (thermal speed) of 200 m/s. The mass of a helium molecule is 3.40 × 10-27 kg. What is the average pressure exerted by the molecules on the walls of the container? (The Boltzmann constant is 1.38 × 10-23 J/K and the ideal gas constant is R = 8.314 J/mol•K .) (12 pts.)

Respuesta :

Answer:

1.133 kPa is the average pressure exerted by the molecules on the walls of the container.

Explanation:

Side of the cubic box = s = 20.0 cm

Volume of the box ,V= [tex]s^3[/tex]

[tex]V=(20.0 cm)^3=8000 cm^3=8\times 10^{-3} m^3[/tex]

Root mean square speed of the of helium molecule : 200m/s

The formula used for root mean square speed is:

[tex]\mu=\sqrt{\frac{3kN_AT}{M}}[/tex]

where,

= root mean square speed

k = Boltzmann’s constant = [tex]1.38\times 10^{-23}J/K[/tex]

T = temperature = 370 K

M = mass helium = [tex]3.40\times 10^{-27}kg/mole[/tex]

[tex]N_A[/tex] = Avogadro’s number = [tex]6.022\times 10^{23}mol^{-1}[/tex]

[tex]T=\frac{\mu _{rms}^2\times M}{3kN_A}[/tex]

Moles of helium gas = n

Number of helium molecules = N =[tex]2.00\times 10^{23}[/tex]

N = [tex]N_A\times n[/tex]

Ideal gas equation:

PV = nRT

Substitution of values of T and n from above :

[tex]PV=\frac{N}{N_A}\times R\times \frac{\mu _{rms}^2\times M}{3kN_A}[/tex]

[tex]PV=\frac{N\times R\times \mu ^2\times M}{3k\times (N_A)^2}[/tex]

[tex]R=k\times N_A[/tex]

[tex]PV=\frac{N\times \mu ^2\times M}{3}[/tex]

[tex]P=\frac{2.00\times 10^{23}\times (200 m/s)^2\times 3.40\times 10^{-27} kg/mol}{3\times 8\times 10^{-3} m^3}[/tex]

[tex]P=1133.33 Pa =1.133 kPa[/tex]

(1 Pa = 0.001 kPa)

1.133 kPa is the average pressure exerted by the molecules on the walls of the container.