Respuesta :

Answer:

           [tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=0[/tex]

Explanation:

Assuming the correct expression is to find the following limit:

         [tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}[/tex]

Use the property the limit of the quotient is the quotient of the limits:

         [tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}[/tex]

Evaluate the numerator:

          [tex]\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}=\frac{1^2-1}{\lim_{x \to1}sin(x-2)}=\frac{0}{\lim_{x \to 1}sin(x-2}[/tex]

Evaluate the denominator:

  • Since         [tex]\lim_{x \to1}sin(x-2)\neq 0[/tex]

                  [tex]\frac{0}{\lim_{x \to1}sin(x-2)}=0[/tex]

ACCESS MORE