Answer:
[tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=0[/tex]
Explanation:
Assuming the correct expression is to find the following limit:
[tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}[/tex]
Use the property the limit of the quotient is the quotient of the limits:
[tex]\lim_{x \to 1}\frac{x^2-1}{sin(x-2)}=\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}[/tex]
Evaluate the numerator:
[tex]\frac{\lim_{x \to 1}x^2-1}{\lim_{x \to 1}sin(x-2)}=\frac{1^2-1}{\lim_{x \to1}sin(x-2)}=\frac{0}{\lim_{x \to 1}sin(x-2}[/tex]
Evaluate the denominator:
[tex]\frac{0}{\lim_{x \to1}sin(x-2)}=0[/tex]