Answer:
[tex]134.7 cm^3[/tex]
Explanation:
We are given that
Initial volume=[tex]V_i=100 cm^3[/tex]
Initial pressure=[tex]P_i=P_a=1.01\times 10^5 Pa[/tex]
Final pressure=[tex]P_f=7.5\times 10^4 N/m^2=7.5\times 10^4 Pa[/tex]
[tex]1 N/m^2=1 Pa[/tex]
Temperature does not change
Therefore, Initial temperature=[tex](T_i)[/tex]=Final temperature([tex]T_f)[/tex]
We know that
[tex]PV=nRT[/tex]
[tex]\frac{PV}{T}=nR=Constant[/tex]
[tex]\frac{P_iV_i}{T_i}=\frac{P_fV_f}{T_f}[/tex]
Substitute the values
[tex]\frac{1.01\times 10^5\times 100}{T_i}=\frac{7.5\times 10^4V_f}{T_i}[/tex]
[tex]V_f=\frac{1.01\times 10^5\times 100}{7.5\times 10^4}[/tex]
[tex]V_f=134.7 cm^3[/tex]
Hence, the air will have volume at cruising altitude=[tex]134.7 cm^3[/tex]