Respuesta :

Answer:

820 nm

Explanation:

We are given that

Wavelength=[tex]\lambda=410 nm[/tex]

[tex]\lambda=410\times 10^{-9} m[/tex]

[tex]1nm=10^{-9} m[/tex]

[tex]\theta=14.5^{\circ}[/tex]

For first minimum therefore

m=0

We know that for destructive interference

[tex](m+\frac{1}{2})\lambda=dsin\theta[/tex]

Substitute the values

[tex](0+\frac{1}{2})\times 410\times 10^{-9}=dsin 14.5[/tex]

[tex]d=\frac{410\times 10^{-9}}{2\times sin 14.5}[/tex]

[tex]d=820\times 10^{-9} m=820 nm[/tex]

Hence, the distance between two slits that produces the first minimum=820 nm

Answer:

Explanation:

wavelength, λ = 410 nm

Angle, θ = 14.5°

The formula used for the distance between the two slits for minima is given by

[tex]dSin\theta =\left (m+\frac{1}{2} \right )\lambda[/tex]

for first order minima, m = 0

d Sin 14.5 = 0.5 x 410

d = 818.76 nm