Respuesta :
Answer:
820 nm
Explanation:
We are given that
Wavelength=[tex]\lambda=410 nm[/tex]
[tex]\lambda=410\times 10^{-9} m[/tex]
[tex]1nm=10^{-9} m[/tex]
[tex]\theta=14.5^{\circ}[/tex]
For first minimum therefore
m=0
We know that for destructive interference
[tex](m+\frac{1}{2})\lambda=dsin\theta[/tex]
Substitute the values
[tex](0+\frac{1}{2})\times 410\times 10^{-9}=dsin 14.5[/tex]
[tex]d=\frac{410\times 10^{-9}}{2\times sin 14.5}[/tex]
[tex]d=820\times 10^{-9} m=820 nm[/tex]
Hence, the distance between two slits that produces the first minimum=820 nm
Answer:
Explanation:
wavelength, λ = 410 nm
Angle, θ = 14.5°
The formula used for the distance between the two slits for minima is given by
[tex]dSin\theta =\left (m+\frac{1}{2} \right )\lambda[/tex]
for first order minima, m = 0
d Sin 14.5 = 0.5 x 410
d = 818.76 nm