Answer:
1008 years
Explanation:
Given that:
Half life = 5720 years
[tex]t_{1/2}=\frac{\ln2}{k}[/tex]
Where, k is rate constant
So,
[tex]k=\frac{\ln2}{t_{1/2}}[/tex]
[tex]k=\frac{\ln2}{5720}\ year^{-1}[/tex]
The rate constant, k = 0.00012 year⁻¹
Using integrated rate law for first order kinetics as:
[tex][A_t]=[A_0]e^{-kt}[/tex]
Where,
[tex][A_t][/tex] is the concentration at time t
[tex][A_0][/tex] is the initial concentration
Given:
11.5 % is decomposed which means that 0.115 of [tex][A_0][/tex] is decomposed. So,
[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.115 = 0.885
t = ?
[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]
[tex]0.885=e^{-0.00012\times t}[/tex]
t = 1008 years