Explanation:
Given,
A particle moving along the x-axis has a position given by
[tex]x=(24t-2.0t^3)[/tex] m ........ (1)
To find, the magnitude ([tex]\dfrac{m}{s^2}[/tex] ) of the acceleration of the particle when the particle is not moving = ?
Differentiating equation (1) w.r.t, 't', we get
[tex]\dfrac{dx}{dt} =\dfrac{d((24t-2.0t^3))}{dt}[/tex]
⇒ [tex]\dfrac{dx}{dt} =24(1)-3(2.0)t^{2} =24-6t^{2}[/tex] ....... (2)
⇒ [tex]24-6t^{2} = 0[/tex]
⇒ [tex]t^{2}=2^{2}[/tex]
⇒ t = 2 s
Again, differentiating equation (2) w.r.t, 't', we get
[tex]\dfrac{d^2x}{dt^2} =-12t[/tex]
Put t = 2, we get
[tex]\dfrac{d^2x}{dt^2} =-12(2)=24[/tex]
Thus, the magnitude 24 ([tex]\dfrac{m}{s^2}[/tex] ) of the acceleration of the particle when the particle is not moving.