Respuesta :
Answer:
the entropy change of the copper block = - 117.29 J/K
the entropy change of the water = 138.01 J/K
the entropy change of the universe = 20.72 J/K
Explanation:
For Copper block:
the mass of copper block [tex](m_c)[/tex] = 1.00 kg
Temperature of block of copper [tex](T_c)[/tex] = 100°C
= (100+273)K
= 373K
Standard Heat capacity for copper [tex](C_c)[/tex] = 386 J/kg.K
For water:
We know our volume of liquid water to be = 4.00 L
At 0.0°C Density of liquid water = 999.9 kg/m³
As such; we can determine the mass since : [tex]density = \frac{mass}{volume}[/tex]
∴ the mass of 4.00 L of liquid water at 0.0°C will be its density × volume.
= 999.9 kg/m³ × [tex]\frac{4}{1000}m^3[/tex]
= 3.9996 kg
so, mass of liquid water [tex](m_w)[/tex] = 3.9996 kg
Temperature of liquid water [tex](T_w)[/tex] at 0.0°C = 273 K
Standard Heat Capacity of liquid water [tex](C_w)[/tex] = 4185.5 J/kg.K
Let's determine the equilibruium temperature between the copper and the liquid water. In order to do that; we have:
[tex]m_cC_c \delta T_c =m_wC_w \delta T_w[/tex]
[tex]1.00*386*(373-T_\theta)=3.996*4185.5*(T _\theta-273)[/tex]
[tex]386(373-T_\theta)=16725.26(T_\theta-273)[/tex]
[tex](373-T_\theta)=\frac{16725.26}{386} (T_\theta-273)[/tex]
[tex](373-T_\theta)=43.33 (T_\theta-273)[/tex]
[tex](373-T_\theta)=43.33 T_\theta-11829.09[/tex]
[tex]373+11829.09=43.33 T_\theta+T_\theta[/tex]
[tex]12202.09 =43.33T_\theta[/tex]
[tex]T_\theta= 275.26 K[/tex]
∴ the equilibrium temperature = 275.26 K
NOW, to determine the Entropy change of the copper block; we have:
[tex](\delta S)_{copper}=m_cC_cIn(\frac{T_\theta}{T_c} )[/tex]
[tex](\delta S)_{copper}=1.0*386In(\frac{275.26}{373} )[/tex]
[tex](\delta S)_{copper}=-117.29 J/K[/tex]
The entropy change of the water can also be calculated as:
[tex](\delta S)_{water}=m_wC_wIn(\frac{T_\theta}{T_w} )[/tex]
[tex](\delta S)_{water}=3.9996*4185.5In(\frac{275.26}{373} )[/tex]
[tex](\delta S)_{water}=138.01J/K[/tex]
The entropy change of the universe is the combination of both the entropy change of copper and water.
[tex](\delta S)_{universe}=(\delta S)_{copper}+(\delta S)_{water}[/tex]
[tex](\delta S)_{universe}=(-117.29+138.01)J/K[/tex]
[tex](\delta S)_{universe}=20.72J/K[/tex]