A metal wire 1.50 m long has a circular cross section of radius 0.32 mm and an end-to-end resistance of 90.0 Ohms. The metal wire is then stretched uniformly so that its cross-section is still circular but its total length is now 6.75 m. What is the resistance of the wire after stretching? (Units: Ohm.)

Respuesta :

Answer:

So after stretching new resistance will be 0.1823 ohm

Explanation:

We have given initially length of the wire [tex]l_1=150m[/tex]

Radius of the wire [tex]r_1=0.32mm=0.32\times 10^{-3}m[/tex]

Resistance of the wire initially [tex]R_1=90ohm[/tex]

We know that resistance is equal to [tex]R=\frac{\rho l}{A}[/tex] ,here [tex]\rho[/tex] is resistivity, l is length and A is area

From the relation we can say that [tex]\frac{R_1}{R_2}=\frac{l_1}{l_2}\times \frac{A_2}{A_1}[/tex]

Now length of wire become 6.75 m

Volume will be constant

So [tex]A_1l_1=A_2l_2[/tex]

So [tex]\pi \times (0.32)^2\times150=\pi \times r_2^2\times 6.75[/tex]

[tex]r_2=1.508mm[/tex]

So [tex]\frac{90}{R_2}=\frac{150}{6.75}\times \frac{1.508^2}{0.32^2}[/tex]

[tex]R_2=0.1823ohm[/tex]

ACCESS MORE