Answer:
[tex]y=\frac{5}{27} x-\frac{1}{27}[/tex]
Step-by-step explanation:
[tex]f(x)=\frac{2x-1}{x+7}[/tex]
To find slope of f(x) at x=2, find the derivative f'(x)
apply quotient rule to find derivative
[tex]f(x)=\frac{2x-1}{x+7}\\f'(x)=\frac{2(x+7)-1(2x-1)}{(x+7)^2} \\f'(x)=\frac{15}{(x+7)^2}[/tex]
f'(x) is the slope . Now find slope at x=2. plug in 2 for x
[tex]f'(x)=\frac{15}{(x+7)^2}\\f'(2)=\frac{15}{(2+7)^2}=\frac{5}{27}[/tex]
find out f(x) when x=2
[tex]f(x)=\frac{2x-1}{x+7}\\f(2)=\frac{2(2)-1}{2+7}=\frac{1}{3}[/tex]
Now frame the equation of the line
(2,1/3) slope = 5/27
[tex]y-y_1=m(x-x_1)\\y-\frac{1}{3}=\frac{5}{27} (x-2)\\y-\frac{1}{3}=\frac{5}{27} x-\frac{10}{27}\\\\y=\frac{5}{27} x-\frac{1}{27}\\\\[/tex]