Respuesta :
Answer:
0.02 m/s
Explanation:
using the formula for flow rate
Q = V / t = Av
v ( speed) = V/ ( TA) where V is volume in m³, t is in seconds, and A is area of the 3.0 cm diameter
V = length × breath × height = 0.36 m × 1.0 m × 0.60 m = 0.216 m³
Area = πr² = π ( 0.03 / 2)² = 0.00071 m²
t = 4 × 60 × 60 = 14400 s
substitute the values into the equation
v = 0.216 m³ / ( 14400 s × 0.00071 m² ) = 0.02 m/s
The flow speed in the 3.0-cm-diameter input tube for the filter is 0.021 m/s
Width of tank = 36 cm = 0.36 m
Volume of tank (V) = length * width * height = 1 * 0.36 * 0.6 = 0.216 m³
Diameter = 3 cm = 0.03 m; radius = diameter / 2 = 0.015 m
Area (A) = πr² = π(0.015)² = 7.07 * 10⁻⁴ m²
Time (t) = 4 hour = 4 * 3600 s = 14400 seconds
The flow speed (v) is:
[tex]v=\frac{V}{At}=\frac{0.216}{7.07*10^{-4}*14400}=0.021[/tex]
Therefore the flow speed in the 3.0-cm-diameter input tube for the filter is 0.021 m/s
Find out more at: https://brainly.com/question/1986340