Answer:
0.3738 min
Explanation:
Integrated rate law for second order kinetics is:
[tex]\frac{1}{[A_t]} = \frac{1}{[A]_0}+kt[/tex]
Where, [tex][A_t][/tex] is the final initial concentration
[tex][A_0][/tex] is the initial concentration
k is the rate constant
t is the time
Given that:-
85% is complete which means that 0.85 of [tex][A_0][/tex] is decomposed. So,
[tex]{[A_t]}[/tex] = 1 - 0.85[tex][A_0][/tex] = [tex]0.15[A_0][/tex]
t = 12 minutes
[tex]\frac{1}{0.15[A_0]} = \frac{1}{[A]_0}+k\times 12[/tex]
[tex]\frac{5.6666}{[A_0]} =12k[/tex]
[tex][A_0]=\frac{5.6666}{12k}[/tex] - 1
Also,
15 % is complete which means that 0.15 of [tex][A_0][/tex] is decomposed. So,
[tex]{[A_t]}[/tex] = 1 - 0.15[tex][A_0][/tex] = [tex]0.85[A_0][/tex]
t = ?
[tex]\frac{1}{0.85[A_0]} = \frac{1}{[A]_0}+kt[/tex]
[tex]\frac{0.1765}{[A_0]} =tk[/tex]
Applying value from 1
[tex]\frac{0.1765}{\frac{5.6666}{12k}} =tk[/tex]
[tex]t=\frac{2.118}{5.6666}\ min=0.3738\ min[/tex]