"A reaction is second order respect to the reactant A. If the reaction is 85% complete in 12 minutes, how long would it take for the reaction to be 15% complete?"

Respuesta :

Answer:

0.3738 min

Explanation:

Integrated rate law for second order kinetics is:

[tex]\frac{1}{[A_t]} = \frac{1}{[A]_0}+kt[/tex]

Where, [tex][A_t][/tex] is the final initial concentration

[tex][A_0][/tex] is the initial concentration

k is the rate constant

t is the time

Given that:-

85% is complete which means that 0.85 of [tex][A_0][/tex] is decomposed. So,

[tex]{[A_t]}[/tex] = 1 - 0.85[tex][A_0][/tex]  = [tex]0.15[A_0][/tex]

t = 12 minutes

[tex]\frac{1}{0.15[A_0]} = \frac{1}{[A]_0}+k\times 12[/tex]

[tex]\frac{5.6666}{[A_0]} =12k[/tex]  

[tex][A_0]=\frac{5.6666}{12k}[/tex]    -  1

Also,  

15 % is complete which means that 0.15 of [tex][A_0][/tex] is decomposed. So,

[tex]{[A_t]}[/tex] = 1 - 0.15[tex][A_0][/tex]  = [tex]0.85[A_0][/tex]

t = ?

[tex]\frac{1}{0.85[A_0]} = \frac{1}{[A]_0}+kt[/tex]

[tex]\frac{0.1765}{[A_0]} =tk[/tex]  

Applying value from 1

[tex]\frac{0.1765}{\frac{5.6666}{12k}} =tk[/tex]  

[tex]t=\frac{2.118}{5.6666}\ min=0.3738\ min[/tex]

ACCESS MORE