Answer:
95% confidence level
[tex]Z = 1.96[/tex]
80% confidence level
[tex]Z = 1.28[/tex]
90% confidence level
[tex]Z = 1.645[/tex]
85% confidence level
[tex]Z = 1.44[/tex]
Step-by-step explanation:
For a confidence level of x, the critical value of z is the value of z with a pvalue of p given by the following formula:
[tex]p = 1 - \frac{1-x}{2}[/tex]
Then we look at the z-table to find Z with a pvalue of p.
a. 95%
Z with a pvalue of
[tex]p = 1 - \frac{1-x}{2} = 1 - \frac{1-0.95}{2} = 0.975[/tex]
So [tex]Z = 1.96[/tex]
d. 80%
Z with a pvalue of
[tex]p = 1 - \frac{1-x}{2} = 1 - \frac{1-0.8}{2} = 0.9[/tex]
So [tex]Z = 1.28[/tex]
b. 90%
Z with a pvalue of
[tex]p = 1 - \frac{1-x}{2} = 1 - \frac{1-0.9}{2} = 0.95[/tex]
So [tex]Z = 1.645[/tex]
e. 85%
Z with a pvalue of
[tex]p = 1 - \frac{1-x}{2} = 1 - \frac{1-0.85}{2} = 0.925[/tex]
So [tex]Z = 1.44[/tex]