Respuesta :
Answer:
The mean water hardness of lakes in Kansas is 425 mg/L or greater.
Step-by-step explanation:
We are given the following data set:
346, 496, 352, 378, 315, 420, 485, 446, 479, 422, 494, 289, 436, 516, 615, 491, 360, 385, 500, 558, 381, 303, 434, 562, 496
Formula:
[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]
where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.
[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]
[tex]Mean =\displaystyle\frac{10959}{25} =438.36[/tex]
Sum of squares of differences = 175413.76
[tex]S.D = \sqrt{\dfrac{175413.76}{24}} = 85.49[/tex]
Population mean, μ = 425 mg/L
Sample mean, [tex]\bar{x}[/tex] = 438.36
Sample size, n = 25
Alpha, α = 0.05
Sample standard deviation, s = 85.49
First, we design the null and the alternate hypothesis
[tex]H_{0}: \mu \geq 425\text{ mg per Litre}\\H_A: \mu < 425\text{ mg per Litre}[/tex]
We use one-tailed t test to perform this hypothesis.
Formula:
[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}} }[/tex]
Putting all the values, we have
[tex]t_{stat} = \displaystyle\frac{438.36 - 425}{\frac{85.49}{\sqrt{25}} } = 0.7813[/tex]
Now, [tex]t_{critical} \text{ at 0.05 level of significance, 24 degree of freedom } = -1.7108[/tex]
Since,
The calculated t-statistic is greater than the critical value, we fail to reject the null hypothesis and accept it.
Thus, the mean water hardness of lakes in Kansas is 425 mg/L or greater.