To solve this problem we will apply the concepts related to the deformation of a body and the normal effort, from which we will obtain the area. From this area applied to the geometric concept of a circular bar we will find the diameter.
The deformation equation in a rod tells us that
[tex]\delta = \frac{PL}{AE}[/tex]
Here,
P = Load
L = Length
A = Cross-sectional area
E = Elastic Modulus
Rearranging the Area,
[tex]A = \frac{PL}{\delta E}[/tex]
Replacing we have that the area is,
[tex]A = \frac{(109*10^{3})(6.1)}{(10*10^{-3})(150*10^9)}[/tex]
[tex]A = 0.000443266m^2[/tex]
[tex]A = 44.32*10^{-6}m^2[/tex]
Using the geometric expression for the Area we have,
[tex]A = \frac{\pi}{4} d^2[/tex]
[tex]d = \sqrt{\frac{4A}{\pi}}[/tex]
[tex]d = \sqrt{\frac{4(44.32)}{\pi}}[/tex]
[tex]d = 7.51mm[/tex]
Therefore the smalles diameter rod is 7.51mm