contestada

The force required to compress the gas in a gas spring a distance x is given by [tex]F = \frac{Constant}{x^k}[/tex] where the constant is determined by the geometry of this device and k is determined by the gas used in the device. One such device has a constant of 200 lbf·in1.4 and k = 1.4. Determine the work, in Btu, required to compress this device from 2 in to 7 in.

Respuesta :

Answer:

[tex]W=1.155\times 10^{-2}\ btu[/tex]

Explanation:

Given relation:

Force, [tex]F=\frac{c}{x^k}[/tex]

where:

[tex]c=[/tex] constant

[tex]x=[/tex] displacement

Constant of the given device, [tex]c=200\ lbf.in^{1.4}[/tex]

initial position of piston, [tex]x_i=2\ in[/tex]

final position of piston, [tex]x_i=7\ in[/tex]

so the net displacement:

[tex]\Delta x = x_f-x_i[/tex]

[tex]\Delta x=7-2[/tex]

[tex]\Delta x=5\ in[/tex]

Substituting the values in the given relation:

[tex]F=\frac{200}{5^{1.4}}[/tex]

[tex]F=21.012\ lbf[/tex]

Now the work done :

[tex]W=F.\Delta x[/tex]

[tex]W=21.012\times 5[/tex]

[tex]W=105.061\ lbf.in[/tex]

  • ∵[tex]1\ lbf.in=11\times 10^{-5}\ btu[/tex]

So,

[tex]W=1.155\times 10^{-2}\ btu[/tex]

ACCESS MORE