Answer:
[tex]W=1.155\times 10^{-2}\ btu[/tex]
Explanation:
Given relation:
Force, [tex]F=\frac{c}{x^k}[/tex]
where:
[tex]c=[/tex] constant
[tex]x=[/tex] displacement
Constant of the given device, [tex]c=200\ lbf.in^{1.4}[/tex]
initial position of piston, [tex]x_i=2\ in[/tex]
final position of piston, [tex]x_i=7\ in[/tex]
so the net displacement:
[tex]\Delta x = x_f-x_i[/tex]
[tex]\Delta x=7-2[/tex]
[tex]\Delta x=5\ in[/tex]
Substituting the values in the given relation:
[tex]F=\frac{200}{5^{1.4}}[/tex]
[tex]F=21.012\ lbf[/tex]
Now the work done :
[tex]W=F.\Delta x[/tex]
[tex]W=21.012\times 5[/tex]
[tex]W=105.061\ lbf.in[/tex]
So,
[tex]W=1.155\times 10^{-2}\ btu[/tex]