The final temperature is 83 K.
Explanation:
For an adiabatic process,
[tex]T {V}^{\gamma - 1} = \text{constant}[/tex]
[tex]\cfrac{{T}_{2}}{{T}_{1}} = {\left( \cfrac{{V}_{1}}{{V}_{2}} \right)}^{\gamma - 1}[/tex]
Given:-
[tex]{T}_{1} = 275 \; K[/tex]
[tex]{T}_{2} = T \left( \text{say} \right)[/tex]
[tex]{V}_{1} = V[/tex]
[tex]{V}_{2} = 6V[/tex]
[tex]\gamma = \cfrac{5}{3} \;[/tex] (the gas is monoatomic)
[tex]\therefore \cfrac{T}{275} = {\left( \cfrac{V}{6V} \right)}^{\frac{5}{3} - 1}[/tex]
[tex]\Rightarrow \cfrac{T}{275} = {\left( \cfrac{1}{6} \right)}^{\frac{2}{3}}[/tex]
T = 275 [tex]\times[/tex] 0.30
T = 83 K.