Respuesta :

                       Question # 7

Answer:

We conclude that the statement B is true. The solution is also attached below.

Step-by-step Explanation:

As the inequality graphed on the number line showing that solution must be   < x    (-∞, 3] U [5, ∞)

So, lets check the statements to know which statement has this solution.

Analyzing statement A)

[tex]x^2-3x+5>\:0[/tex]

[tex]\mathrm{Write}\:x^2-3x+5\:\mathrm{in\:the\:form:\:\:}x^2+2ax+a^2[/tex]

[tex]2a=-3\quad :\quad a=-\frac{3}{2}[/tex]

[tex]\mathrm{Add\:and\:subtract}\:\left(-\frac{3}{2}\right)^2\:[/tex]

[tex]x^2-3x+5+\left(-\frac{3}{2}\right)^2-\left(-\frac{3}{2}\right)^2[/tex]

[tex]\mathrm{Complete\:the\:square}[/tex]

[tex]\left(x-\frac{3}{2}\right)^2+5-\left(-\frac{3}{2}\right)^2[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]\left(x-\frac{3}{2}\right)^2+\frac{11}{4}[/tex]

So,

[tex]\left(x-\frac{3}{2}\right)^2>-\frac{11}{4}[/tex]

Thus,

[tex]x^2-3x+5>0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:\mathrm{True\:for\:all}\:x\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}[/tex]

Therefore, option A) is FALSE.

Analyzing statement B)

(x + 3) (x - 5) ≥ 0

[tex]x^2-2x-15\ge 0[/tex]

[tex]\left(x+3\right)\left(x-5\right)=0[/tex]       [tex]\left(Factor\:left\:side\:of\:equation\right)[/tex]

[tex]x+3=0\:or\:x-5=0[/tex]

[tex]x=-3\:or\:x=5[/tex]

So

[tex]x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5[/tex]

Thus,

[tex]\left(x+3\right)\left(x-5\right)\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-3\quad \mathrm{or}\quad \:x\ge \:5\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-3]\cup \:[5,\:\infty \:)\end{bmatrix}[/tex]

Therefore, the statement B is true.

Solution is also attached below.

Analyzing statement C)

[tex]x^2+2x-15\ge 0[/tex]

[tex]\mathrm{Factor}\:x^2+2x-15:\quad \left(x-3\right)\left(x+5\right)[/tex]

So,

[tex]x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3[/tex]

[tex]x^2+2x-15\ge \:0\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-5\quad \mathrm{or}\quad \:x\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-5]\cup \:[3,\:\infty \:)\end{bmatrix}[/tex]

Therefore, option C) is FALSE.

Analyzing statement D)

- 3 < x < 5

[tex]-3<x<5\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:-3<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(-3,\:5\right)\end{bmatrix}[/tex]

Therefore, option D) is FALSE.

Analyzing statement E)

None of the above

The statement E) is False also as the statement B represents the correct solution.

Therefore, from the discussion above, we conclude that the statement B is true. The solution is also attached below.

                         Question # 8

Find the number that is [tex]\frac{1}{3}[/tex] of the way from [tex]\:2\frac{1}{6}[/tex] to [tex]\:5\frac{1}{4}[/tex].

Answer:

Therefore, [tex]\frac{37}{36}[/tex] is the number that is  [tex]\frac{1}{3}[/tex] of the way from  [tex]\:2\frac{1}{6}[/tex] to [tex]\:5\frac{1}{4}[/tex].

Step-by-step Explanation:

[tex]\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a\frac{b}{c}=\frac{a\cdot \:c+b}{c}[/tex]

So,

[tex]2\frac{1}{6}=\frac{13}{6}[/tex]

[tex]5\frac{1}{4}=\frac{21}{4}[/tex]

As the length from [tex]\frac{21}{4}[/tex] to [tex]\frac{13}{6}[/tex] is

[tex]\frac{21}{4}-\frac{13}{6}=\frac{37}{12}[/tex]

Now Divide [tex]\frac{37}{12}[/tex] into 3 equal parts. So,

[tex]\frac{37}{12}\div \:3=\frac{37}{36}[/tex]

As we have to find number that is [tex]\frac{1}{3}[/tex] of the way from  [tex]\:2\frac{1}{6}[/tex] to [tex]\:5\frac{1}{4}[/tex], it means it must have covered 2/3 of the way. As we have divided  [tex]\frac{37}{12}[/tex] into 3 equal parts, which is [tex]\frac{37}{36}[/tex]

Therefore, [tex]\frac{37}{36}[/tex] is the number that is  [tex]\frac{1}{3}[/tex] of the way from  [tex]\:2\frac{1}{6}[/tex] to [tex]\:5\frac{1}{4}[/tex].

                       Question # 9

Answer:

[tex]\left(2x+3\right)[/tex] is in the form [tex]dx+\:e[/tex].

Step-by-step Explanation:

Considering the expression

[tex]2x^2+11x+12[/tex]

Factor

[tex]2x^2+11x+12[/tex]

[tex]\mathrm{Break\:the\:expression\:into\:groups}[/tex]

[tex]\left(2x^2+3x\right)+\left(8x+12\right)[/tex]

[tex]\mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2+3x\mathrm{:\quad }x\left(2x+3\right)[/tex]

[tex]\mathrm{Factor\:out\:}4\mathrm{\:from\:}8x+12\mathrm{:\quad }4\left(2x+3\right)[/tex]

[tex]x\left(2x+3\right)+4\left(2x+3\right)[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}2x+3[/tex]

[tex]\left(2x+3\right)\left(x+4\right)[/tex]

Therefore, [tex]\left(2x+3\right)[/tex] is in the form [tex]dx+\:e[/tex].

Keywords: factor, ratio, solution

Learn more about ratio from brainly.com/question/12906563v

#learnwithBrainly

Ver imagen SaniShahbaz