Answer : The vapor pressure (in atm) of a solution is, 0.679 atm
Explanation : Given,
Mass of [tex]H_2O[/tex] = 1.00 kg = 1000 g
Moles of [tex]CsF[/tex] = 3.68 mole
Molar mass of [tex]H_2O[/tex] = 18 g/mole
Vapor pressure of water = 0.692 atm
First we have to calculate the moles of [tex]H_2O[/tex].
[tex]\text{Moles of }H_2O=\frac{\text{Mass of }H_2O}{\text{Molar mass of }H_2O}=\frac{1000g}{18g/mole}=55.55mole[/tex]
Now we have to calculate the mole fraction of [tex]H_2O[/tex]
[tex]\text{Mole fraction of }H_2O=\frac{\text{Moles of }H_2O}{\text{Moles of }H_2O+\text{Moles of }CsF}=\frac{55.55}{55.55+3.68}=0.938[/tex]
Now we have to partial pressure of solution.
According to the Raoult's law,
[tex]P_{Solution}=X_{H_2O}\times P^o_{H_2O}[/tex]
where,
[tex]P_{Solution}[/tex] = vapor pressure of solution
[tex]P^o_{H_2O}[/tex] = vapor pressure of water = 0.692 atm
[tex]X_{H_2O}[/tex] = mole fraction of water = 0.938
[tex]P_{Solution}=X_{H_2O}\times P^o_{H_2O}[/tex]
[tex]P_{Solution}=0.938\times 0.692atm[/tex]
[tex]P_{Solution}=0.649atm[/tex]
Therefore, the vapor pressure (in atm) of a solution is, 0.679 atm