12. The vapor pressure of water at 90°C is 0.692 atm. What is the vapor pressure (in atm) of a solution made by dissolving 3.68 mole(s) of CsF(s) in 1.00 kg of water? Assume that Raoult's law applies.

Respuesta :

Answer : The vapor pressure (in atm) of a solution is, 0.679 atm

Explanation : Given,

Mass of [tex]H_2O[/tex] = 1.00 kg = 1000 g

Moles of [tex]CsF[/tex] = 3.68 mole

Molar mass of [tex]H_2O[/tex] = 18 g/mole

Vapor pressure of water = 0.692 atm

First we have to calculate the moles of [tex]H_2O[/tex].

[tex]\text{Moles of }H_2O=\frac{\text{Mass of }H_2O}{\text{Molar mass of }H_2O}=\frac{1000g}{18g/mole}=55.55mole[/tex]

Now we have to calculate the mole fraction of [tex]H_2O[/tex]

[tex]\text{Mole fraction of }H_2O=\frac{\text{Moles of }H_2O}{\text{Moles of }H_2O+\text{Moles of }CsF}=\frac{55.55}{55.55+3.68}=0.938[/tex]

Now we have to partial pressure of solution.

According to the Raoult's law,

[tex]P_{Solution}=X_{H_2O}\times P^o_{H_2O}[/tex]

where,

[tex]P_{Solution}[/tex] = vapor pressure of solution

[tex]P^o_{H_2O}[/tex] = vapor pressure of water = 0.692 atm

[tex]X_{H_2O}[/tex] = mole fraction of water = 0.938

[tex]P_{Solution}=X_{H_2O}\times P^o_{H_2O}[/tex]

[tex]P_{Solution}=0.938\times 0.692atm[/tex]

[tex]P_{Solution}=0.649atm[/tex]

Therefore, the vapor pressure (in atm) of a solution is, 0.679 atm

ACCESS MORE