Respuesta :
Answer:
The probability that more than 10 parts will be defective is 0.99989.
Step-by-step explanation:
Let X = a part in the shipment is defective.
The probability of a defective part is, P (Defect) = p = 0.03.
The size of the sample is: n = 1000.
Thus, the random variable [tex]X\sim Bin(1000, 0.03)[/tex].
But the sample size is very large.
The binomial distribution can be approximated by the Normal distribution if the following conditions are satisfied:
- np ≥ 10
- n (1 - p) ≥ 10
Check the conditions:
[tex]np=1000\times0.03=30>10\\n(1-p)=1000\times(1-0.03)=970>10[/tex]
Thus, the binomial distribution can be approximated by the Normal distribution.
The sample proportion (p) follows a normal distribution.
Mean: [tex]\mu_{p}=0.03[/tex]
Standard deviation: [tex]\sigma_{p}=\sqrt{\frac{p(1-p)}{n} } =\sqrt{\frac{0.03(1-0.03)}{1000} } =0.0054[/tex]
Compute the probability that there will be more than 10 defective parts in this shipment as follows:
The proportion of 10 defectives in 1000 parts is: [tex]p=\frac{10}{1000}=0.01[/tex]
The probability is:
[tex]P(p>0.01)=P(\frac{p-\mu_{p}}{\sigma_{p}}> \frac{0.01-0.03}{0.0054}) =P(Z>-3.704)=P(Z<3.704)[/tex]
Use the standard normal table for the probability.
[tex]P(p>0.01)=P(Z<3.704)=0.99989[/tex]
Thus, the probability that more than 10 parts will be defective is 0.99989.