Answer:
a. [tex]u_x=32.6448\ m.s^{-1}[/tex]
b. Zero
c. [tex]v=45.3486\ m.s^{-1}[/tex]
Explanation:
Given:
b.
Since the ball is projected horizontally it will have only the initial component of the velocity and zero vertical component of the velocity initially.
So, the initial vertical component of the velocity, [tex]u_y=0[/tex]
a.
Now we find the time taken by the ball to reach the ground:
[tex]h=u_y.t_d+\frac{1}{2} \times g.t_d^2[/tex]
[tex]50.5=0+0.5\times 9.81\times t_d^2[/tex]
[tex]t_d=3.21\ s[/tex] is the time of total motion of the ball.
[tex]u_x=v_x[/tex]
where:
[tex]u_x=[/tex] initial velocity in the horizontal direction
[tex]v_x=[/tex] final velocity in the horizontal direction
[tex]s=u_x\times t_d[/tex]
[tex]104.8=u_x\times 3.21[/tex]
[tex]u_x=32.6448\ m.s^{-1}[/tex]
c.
Now the final vertical velocity:
[tex]v_y^2=u_y^2+2g.h[/tex]
[tex]v_y^2=0^2+2\times 9.81\times 50.5[/tex]
[tex]v_y=31.4771\ m.s^{-1}[/tex]
Hence the resultant velocity just before the ball lands:
[tex]v=\sqrt{(v_y)^2+(u_y)^2}[/tex]
[tex]v=\sqrt{(31.4771)^2+(32.6448)^2}[/tex]
[tex]v=45.3486\ m.s^{-1}[/tex]